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We examined the behavior of a nonconducting fe r romagnet ic  suspension in a uniform rotat ing m a g -  
netic field. The field rotation causes rotation of the suspended par t ic les ,  which have intr insic magnetic 
moments~ Each part icle  becomes the center  of a microscopic  eddy, which all combine to generate the 
macroscopic  (that is, hydrodynamic) motion of the medium. The equations of motion of a fluid with 
internal rotation are  used to descr ibe this "pumping" of angular momentum from the latent (microeddy) 
form into the visible fo rm.  The solution of these equations is obtained for the case in which the f e r r o -  
magnetic suspension fills a cylindrical  cavity and the magnetic field rota tes  in the plane perpendicular  to 
the axis of the cyl inder .  The absorbed power and the fr ict ion torque acting on the walls of the cylinder are  
calculated. The computational resul ts  are  compared with the available experimental  data. 

Entrainment  of a nonconducting fluid by a rotat ing magnetic field was f i r s t  observed in ]939 by 
Zwetkoff [1]. In the experiment  he used an anisotropic fluid (n-azoxyanisole), whose molecules have dia-  
magnetic anisotropy and tend to ar range themselves  so that the grea tes t  length of the molecules is 
paral lel  to the field intensity. In this case rotat ion of the magnetic field leads to the appearance of internal 
angular momentum associa ted with rotat ion of the molecules .  The internal fr ict ion p rocesses  accompany-  
ing the rotat ion of the molecules provide for partial  convers ion of the internal angular momentum into the 
visible (hydrodynamic) fo rm.  In the case of steady rotat ion of the field an equilibrium distribution of the 
angular momentum is established between the latent and visible motions, i .e. ,  the entire fluid is entrained 
into rotation. 

A rotational effect analogous to the Zwetkoff effect, but far  more  s t rongly manifested,  was recent ly  
observed by Moskowitz and Rosenzweig [2] in experiments  with a fe r romagnet ic  fluid. The la t ter  was a 
colloidal suspension of fe r romagnet ic  par t ic les  suspended in a nonconducting liquid. 

In both of these studies an identical explanation is given for the observed entrainment  of the fluid; it 
appears  to us that this explanation is in e r r o r .  In the case of steady rotat ion of the suspended par t ic les  
the moment  of the external force acting on them from the field is balanced by the moment of the viscous 
fr ict ion forces .  The authors of [1, 2] assume that this is sufficient to entrain the fluid into the macroscopic  
motion. However, let us consider  a suspension in which all the suspended par t ic les  rotate with the same 
angular velocity ~o Each part icle  draws into rotat ion the viscous fluid l aye r s  lying nearby,  forming a 
microscopic  eddy whose dimensions do not exceed the distance between the par t ic les ;  in so doing each 
part icle  rotates  the fluid about its own axis, therefore  when averaged the microscopic  eddies do not lead 
to any resul tant  hydrodynamic motion. A "macroscop ic"  eddy with velocity ~ = l/2 r o t v  is possible,  as 
shown below, only in the case of nonuniform internal rotat ion.  

1. For  the theoret ical  descript ion of the experimental ly  d iscovered [2] entrainment  of fluid by a 
rotating magnetic field it is neces sa ry  to account co r rec t ly  for  the interaction between latent rotat ion (of 
the microeddy) and visible rotat ion (with the hydrodynamic velocity v). The equations of motion of an 
incompress ible  fluid having internal angular momentum have the form [3] 

§ _ § 

Osot + (vV) s = ~t (s -- Y~) + DAs + K , div v ~ 0 TI, = 11 + 4~ ] 
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Here s, ~'s, and D are  the volumetr ic  density, relaxation time, and diffusivity of the internal angular 
momentum, J is the moment of inert ia per  unit volume, equal in order  of magnitude to p/2, where p is the 
density of the suspension, l is the average distance between the suspended par t ic les  - the centers  of the 
microeddies ,  K is the volumetr ic  density of the moment  of the external forces  acting on the par t ic les .  

It should be noted that s is not s imply the sum of the angular momenta s o of the solid par t ic les .  Each 
part icle  draws into rotat ion the surrounding fluid, so that s is l a r g e r  than so, approaching the la t ter  near  
the boundary of the cavity, where the fluid motion is res t r i c ted .  

The sys tem of equations (1.1) is not closed; it must  be supplemented by the equations defining the 
external force moment  density. However, such equations cannot be obtained in general form.  In fact, the 
moment k of the external force acting on a single part icle  depends significantly on its internal state and 
orientat ion.  Therefore  to obtain the macroscopic  volumetr ic  densi tyK we must  average the microscopic  
moments  k, which requi res  special  analysis  in each concrete case.  

We consider  a fe r romagne t ic  suspension consist ing of spherical  s ingle-domain part icles  (if the' 
par t ic les  are  not s ingle-domain,  the resul ts  obtained below are  valid in fields whose intensity is less  than 
the coerc ive  force,  and then the residual  magnetization is to be taken as m), each of which has the magnetic 
moment m. If the intensity H of the homogeneous rotating field is small  in compar ison with tim i (fi is the 
anisotropy constant, M i is the specific magnetizat ion of the solid fer romagnet ic) ,  the torque acting on an 
individual part icle  is k = m • H. In the considered case of a s t rongly anisotropic fer romagnet ic ,  de t e r -  
ruination of the external torque volume density reduces to simple summation of the vec tors  k, which yields 

K---- (Zm) x H--= M • H (1.2) 

where M is the specific magnetizat ion of the fluid. Thus the sys tem (1.1) must  be supplemented by the 
equation describing the dynamics of the magnetization of the fe r romagnet ic  suspension.  

The magnetic moment of an individual part icle  is acted upon by the field H, created by the external 
sources ,  and the local field owing to d i p o l e -  dipole interact ion of the magnetic moments .  However, the 
la t ter ,  as in a paramagnet ic ,  has no orienting effect and therefore  is not considered in the following. The 
equilibrium distribution of the par t ic les  with regard  to the orientations of their  magnetic moments in a 
constant field is defined by the Eins te in-Fokker  equation, whose s teady-s ta te  solution in the present  case 
is known [4] to coincide with the Gibbs distr ibution 

w : C e x p ( m H / k T )  

This implies that the sys tem of magnetic moments behaves like a conventional paramagnet ic ,  but 
with anomalously large  moments  of the individual par t ic les .  The equilibrium magnetizat ion of such a 
"superparamagnet ic  ~ is descr ibed by the Langevin function 

M = MoL ~ 

The magnetic moments  of the par t ic les  are  large;  therefore  saturat ion at room tempera ture  is 
reaehed even in very  weak fields. Thus, in a constant field we have M = (M0/tl) H. In a rotat ing field the 
magnetic moment approaches the instantaneous equilibrinm value, which makes it possible to write the 
magnetization equation in the form (this equation is valid for field rotat ion frequencies which are  small in 
compar ison with the fe r romagnet ic  resonanee frequency) 

where T is the magnetization relaxation t ime.  Since in the highly anisotropic  fe r romagne t ic  in question 
here  the magnetic moment  is r igidly coupled with the axis of eas ies t  magnetization, rotat ion of the magnetic 
moments is possible only as rotation of the par t ic le  themselves .  Therefore  the time ~" is determined only 
by the tempera ture ,  fluid viscosi ty ,  and par t ic le  dimensions.  

Equations (1.1)-- (1.3) form a complete sys tem for the problem in question. 

2. Let a fe r romagnet ic  fluid fill a cylindrical  cavity of radius R. The magnetic field, perpendicular  
to the axis of the cylinder,  rotates  with the constant angular velocity 

H,  -~ H cos cot, Hy ~ H sin cot 
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We s e e k  the s t e a d y - s t a t e  s o l u t i o n  of the equa t ions  of mot ion ,  in  which  the f lu id  v e l o c i t y  has  only  the 
componen t :  v ~  = v( r ) ,  v r = Vz = 0. We s e e  f r o m  (1.1.1) tha t  such  m o t i o n  i s  p o s s i b l e  if  s is  i ndependen t  

of t i m e  and s r = s e  = 0, s z = s(r)o It  fo l lows  f r o m  (1.1.2) and (1.2), in tu rn ,  tha t  the  s t e a d y  so lu t i on  of th is  
f o r m  e x i s t s  only  if Kz = M x H y -  MyHx = cons t  (t). Th i s  cond i t ion  i s  s a t i s f i e d  when  the m a g n e t i z a t i o n  v e c t o r  
r o t a t e s  wi th  the  s a m e  a n g u l a r  v e l o c i t y  a s  the  f i e ld ,  f o r m i n g  wi th  the  l a t t e r  the  c o n s t a n t  t r a i l  ang le  

M~ = M cos (oat - -  a ) ,  M u = M sin (oat - -  a) 

The  m a g n e t i z a t i o n  a m p l i t u d e  M and the  ang le  ~ a r e  found f r o m  (lo3) 

Mo (2.1) tg 0r = co~, M = M0 cos a = V 1 + co~ ~ 

Hence we see that the trai l  angle a < 1/2 r for any field rotat ion frequencies ,  and the magnetic 
moment volume density dec reases  monotonically with increase  of the frequency (liquid polar  dielectr ics  
in an e l e c t r i c  f i e l d  have  s i m i l a r  f r e q u e n c y  d i s p e r s i o n  [5]). Th i s  m e a n s  a s p r e a d i n g  of the  p r o b a b i l i t y  
d i s t r i b u t i o n  fo r  the o r i e n t a t i o n  of the  m a g n e t i c  m o m e n t s  of the  ind iv idua l  p a r t i c l e s  a s  the  f i e l d  f r e q u e n c y  
i s  i n c r e a s e d .  In th i s  p r o c e s s  the  p a r t i c l e s  t h e m s e l v e s ,  in sp i t e  of the  a s s u m p t i o n s  m a d e  in [1, 2], do not  
r o t a t e  in a s t a t i o n a r y  f a s h i o n .  F o r  s t a t i o n a r y  r o t a t i o n  of an  ind iv idua l  p a r t i c l e  i t  i s  n e c e s s a r y  that  the  
t r a i l  ang le  f o r m e d  by  i t s  m a g n e t i c  m o m e n t  wi th  the  f i e ld  d i r e c t i o n  be  c o n s t a n t .  H o w e v e r  the  B r o w n i a n  
mot ion ,  which  v a r i e s  con t i nuous ly  both  the  p a r t i c l e  o r i e n t a t i o n  and the l o c a l  f i e l d s  a c t i n g  on the  p a r t i c l e s ,  
p r e v e n t s  th i s  c o n s t a n c y .  

L e t  us  t u r n  to the de f in i t i on  of v and s.  E x c l u d i n g  the p r e s s u r e  f r o m  (1.1.1),  we ob t a in  fo r  the n o n -  
z e r o  componen t s  of the v o r t i c i t y  ~z = ~ and i n t e r n a l  m o m e n t  Sz = s the equa t ions  

s " '  D -- ~,(s--J~)=--MHsin (2.2) 

( p r i m e  deno t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to r ) ,  wi th  the  b o u n d a r y  cond i t ions  a t  the  s u r f a c e  of the  c y l i n d e r  

v ( B )  = 0,  s ( R )  = so 

We i n t e g r a t e  the f i r s t  equa t ion  (2.2) 

l , ~ ( 2 . 3 )  
= T r ( r v )  = 4 ~ 1 ,  + Cx 

and exc lude  fl f r o m  the s e c o n d  equa t ion  

s" + ~-- - - z 2 s  = - - A ,  
- -  r 

Hence  

~1, D ~  ' --ff M H  sin a + Cx 

s (r) = A n  -2 + C J o  (nr) 

(2.4) 

H e r e  I 0 i s  the  B e s s e l  func t ion  of  i m a g i n a r y  a r g u m e n t .  The  f lu id  v e l o c i t y  i s  now found f r o m  (2.3). 
A f t e r  s a t i s f y i n g  the b o u n d a r y  cond i t ions  we ob ta in  

[ I [ r s ( r ) = s o + ( T s M H s i n ~ - - S o )  0. l I0(-r) v ( r ) = v 0  
Io (• ' -R- I~ (• j 

R (TsMH sin a - -  so) 2/'a (zR) J [ 2In (• ] 
V o ~  @ ( n )  z m o ( Z n )  ' ~ I (R)=  ~ I - F ~ - [  t •215 

(2.5) 

We s e e  f r o m  i t s  de f in i t i on  tha t  the  v a l u e s  of the  func t ion  ~(R) l i e  in the r a n g e  ~ .  > ~? (R) > ~. The  
n a t u r e  of  the  s o l u t i o n  (2.5) depends  s i g n i f i c a n t l y  on the va lue  of R, i . e . ,  on the r a t i o  of the c y l i n d e r  r a d i u s  

to the d i f fu s ion  l e n g t h  
lD = I/~4 ~ r  ( ~ . / ~  1) (2.6) 

The  b a s i s  of the i n t e r n a l  a n g u l a r  m o m e n t u m  d i f fus ion  m e c h a n i s m  l i e s  in the v i s c o s i t y  of the  s u s p e n -  
s ion ,  whi le  the r e l a x a t i o n  t i m e  i s  d e t e r m i n e d  by  the v i s c o s i t y  and the  a v e r a g e  d i s t a n c e  I b e t w e e n  the s o l i d  
p a r t i c l e s  ( m i c r o e d d y  c e n t e r s ) .  V e r y  s i m p l e  e s t i m a t e s  of the  type  D ... v and Vs ~ 1 2 / v  l e a d  in a c c o r d a n c e  
wi th  (2.6) to 1D N l .  C o m p a r i s o n  of the  c a l c u l a t i o n  r e s u l t s  wi th  e x p e r i m e n t  [2] y i e l d s  l D  ~ 10 -4 cm,  wh ich  
a g r e e s  wi th  the  e s t i m a t e  no ted  above .  T h e r e f o r e  in the  fo l lowing  we s h a l l  t ake  R >> 1. 
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Fig. 1 

The solution (2.5) for  zR>> 1 has a very  marked boundary layer  nature.  Throughout the entire fluid 
volume, with the exception of a narrow wall layer ,  s is constant, equal to 7sMH sin a, and diminishes to 
the boundary value s o at distances of order  lD (Fig. la). The quantity so charac te r izes  the rotational 
intensity of only the suspended par t ic les ;  its definition goes beyond the scope of hydrodynamic theory.  In 
principle the quantity so can be determined experimental ly.  Unfortunately, the experimental  data present ly  
available are  not adequate for this purpose - the single note [2] presents  only a brief  descript ion of p r e -  
l iminary  observat ions .  However, we can assume that So is small  in compar ison with TsMH sin a .  In fact, 
s = TsMH sin a is the sum of the angular momenta of the microscopic  eddies whose dimensions are  on the 
o rder  of the distance 1 between the par t i c les .  ,Since l is large in compar ison with the par t ic le  dimension 

(So/s) ~ (a / l) 2 . ~  i 

Therefore  we can drop s o in the express ion for the velocity amplitude v 0. 

Accounting for (2.1), then for ~r >> 1 we have 

M o H R  1 ~,)T: (2.7) 
v~ = 2~1, •  "1 + ~P~: 

The velocity profile v(r) is l inear  up to r ~ R - -  lD (Fig. lb). We see f rom (2.7) that the amplitude of 
the macroscopic  fluid motion velocity is proport ional  to the magnitude of the applied field and has marked 
frequency dispersion.  The maximal rate of entrainment  of the fluid by the rotat ing magnetic  field is 
reached for w~ = 1. 

The dependence of the velocity amplitude on the field intensity is presented in [2] for two values of 
the field cyclic rotat ion frequency:  f i  = 100 Hz a n d f  2 = 1000 Hz. For  both frequencies the amplitude is a 
l inear  function of the field and the slope of the line vo(H ) at the frequency f t  is less  by a factor  of four than 
for  f2.  Theseda ta  are  sufficient to use (2.7) to determine the magnetization relaxation time. The resul t ing 
value T = 2 �9 10 -4 sec is in agreement  with an independent est imate,  in accordance with which T -~ 4~a3 /kT 
is the diffusion time for  rotational Brownian motion: equating these express ions  for  T yields the co r rec t  
o rde r  of magnitude for a ~10 -5 cm [610 

3. In opaque fluids, which include the fe r romagnet ic  suspensions,  measurement  of the velocity 
profile involves ser ious  difficulties. Fa r  bet ter  precis ion can be obtained by studying the integral 
charac te r i s t i c s  of the motion: the frictional torque acting on the cylinder walls and the power absorbed,  
which can be measured  by standard electronic  methods.  In this connection there is in te res t  in calculating 
the frictional torque Mf and the dissipative function F.  

The fr ict ion torque acting per  unit cylinder length is 

MI = --2aR2~rr (B), O'r~ (r) 

[7] 

= 0 ,  (v" - -  v ] r )  

Substituting the fluid velocity f rom (2.5) into the express ion  for the (rq~) component of the viscous 
s t r e s s  tensor ,  we obtain 

~* F 2II(~'R) ] ~'l/If = ~Tl~;Vltt sin ~ ~ | i  
J L 

Hence for ~R >> 1 

MI = ~R~Mo H I +~ (3.1) 

Let us estimate the magnitude of the frictional torque for ~- ~ I. A ferromagnetic suspension with 

M 0 : 60 Gauss was used in the experiment [2]. For such a fluid with cylinder radius R N 1 cm we obtain 

Mf N H �9 102 dynes. 
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The diss ipat ive  function for  a fluid with internal  ro ta t ion  has the fo rm [3] 

- - , = T I ~.-~ + -5~ ) , F,  - 2J r  ' F~ = -y \ 0~, ) (3.2) 

The energy diss ipated pe r  unit t ime is I E ' [  = 2 fFdV;  he re  the in tegrat ion is p e r f o r m e d  over  the 
cyl inder  volume V. The p r i m a r y  contr ibution to the dissipat ion is that  of FI-, a s soc ia t ed  with re laxa t ion  
of the internal  ro ta t ion.  In fact ,  F~ and F D a re  smal l  because  of the sma l lnes s  of the der iva t ives  v '  and 
s v through the volume of the cyl inder  except  for  the nar row wall l aye r  of thickness  lD (Fig. 1). In this 
l a y e r  FT? and FD a re  comparab le  in magnitude with FT, so that  the i r  contr ibution to the in tegral  E" is smal l  
in compar i son  with the contribution of F~ in the ra t io  

lD/R ---- (nR)-~ ~ t 

Fo r  the s ame  reason ,  in the expres s ion  for  FT we can neglect  5f2 in compar i son  with s .  Thus,  the 
diss ipat ive  function is p rac t i ca l ly  constant  over  the en t i re  cyl inder  volume and equal to 

F ~ F ~  ~ 21~s ~2-7~'~ ('r 

Thus the abso rbed  power is 
(02T ~ 

[E'] = ~ Mo2It?V (t + (o~) ~ (3.3) 

Maximal absorpt ion  takes place for  w~" ~ 1. In this case ,  using the s imple  e s t ima te s  g - - p l  2 and v s ~ 
12/v presen ted  above for  M 0 = 60 Gauss ,  we obtain 

[ E" [/V ~ t0-2H ~ W/cm s, (3.4) 

where  H is e x p r e s s e d  in Oerstedso Such a l a rge  value of the d iss ipa ted  power  makes  it p rac t i ca l ly  
imposs ib le  to r ea l i ze  the f e r rohydrodynamic  pttmps p roposed  in [2], based  on entra ining fluid by a ro ta t ing  
field.  

4. In conclusion we shall d i scuss  the l imi t s  of appl icabi l i ty  of the above ana lys i s .  Equations (1.1) 
a r e  l inear  in s .  This  means  that they do not desc r ibe  the co r re l a t ion  of mic roedd ies  at different  spat ial  
points .  This  approximat ion  is acceptable  as long as the radius  of the mic roeddy  which f o r m s  around the 
solid par t ic le  is smal l  in compar i son  with the dis tance l between pa r t i c l e s ,  or at  l e a s t  does not exceed I .  
However ,  i nc rea se  of s with inc rease  of H (s ~ ~'s MH sin a) means  an i nc rea se  of the rad i i  of the "bound n 
eddies .  There fo re ,  beginning with some values  of the magnet ic  field intensi ty in te rac t ion  of the eddies 
becomes  signif icant  and the l inear  equations will no longer  be val id .  In s t rong  fields an ent i re  spec t ru m 
of "mic roeddy  ~ sca les  develops,  which co r responds  to highly an iso t ropic  developed turbulence .  There  is 
no bas i s  to expect  that the l i nea r  dependence of the ave r age  veloci ty  on the field intensi ty  is mainta ined in 
the turbulent  region.  Such a l inear  dependence was obse rved  in the expe r imen t s  of [2], which conf i rms  the 
appl icabi l i ty  of our analysis  for  the field range used in [2]. 

L I T E R A T U R E  C I T E D  

1. V. Zwetkoff,  "Bewegung an i so t rope r  Fl i iss igkei ten im ro t i e renden  Magnetfeld," Acta phys icochimica  
URSS, vol.  10, no. 4 (1939). 

2. R.  Moskowitz and R. E.  Rosensweig,  "Nonmechanical  t o r q u e - - d r i v e n  flow of a f e r romagne t i c  fluid 
by an e l ec t romagne t i c  field," Appl. Phys .  Let . ,  Vol~ 11, No. 10 (1967). 

3. M . I .  Shliomis,  " On hydrodynamics  of a liquid with internal  rota t ion,"  ZhETF,  Vol. 51, No. 1(7) 
(1966). 

4. M . A .  Leontovich,  Stat is t ical  Physics  [in Russian] ,  Gostekhizdat ,  Moscow (1954). 
5. P . J .  Debye, Po la r  Molecules [Russian t rans la t ion] ,  ONTI (1934). 
6. J . L .  Neur inger  and R. E. Rosensweig,  "The  f e r r o h y d r o d y n a m i c s f  Phys .  Fluids,  Vol. 7, No. 12 

(1964). 
7. L . D .  Landau and E.  M. Lifshi tz ,  Mechanics of Continuous Media [in Russian] ,  2nd edition, 

Gostekhizdat ,  Moscow (1953)o 

700 


