ENTRAINMENT OF FERROMAGNETIC SUSPENSION
BY A ROTATING FIELD
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We examined the behavior of a nonconducting ferromagnetic suspension in a uniform rotating mag-
netic field, The field rotation causes rotation of the suspended particles, which have intrinsic magnetic
moments, Each particle becomes the center of a microscopic eddy, which all combine to generate the
macroscopic (that is, hydrodynamic) motion of the medium. The equations of motion of a fluid with
internal rotation are used to describe this "pumping" of angular momentum from the latent (microeddy)
form into the visible form. The solution of these equations is obtained for the case in which the ferro-
magnetic suspension fills a cylindrical cavity and the magnetic field rotates in the plane perpendicular to
the axis of the cylinder. The absorbed power and the friction torque acting on the walls of the cylinder are
calculated. The computational results are compared with the available experimental data.

Entrainment of a nonconducting fluid by a rotating magnetic field was first observed in 1939 by
Zwetkoff [1]. In the experiment he used an anisotropic fluid (n-azoxyanisole), whose molecules have dia~
magnetic anisotropy and tend to arrange themselves so that the greatest length of the molecules is
parallel to the field intensity. In this case rotation of the magnetic field leads to the appearance of internal
angular momentum associated with rotation of the molecules, The internal friction processes accompany-
ing the rotation of the molecules provide for partial conversion of the internal angular momentum into the
visible (hydrodynamic) form. In the case of steady rotation of the field an equilibrium distribution of the
angular momentum is established between the latent and visible motions, i.e., the entire fluid is entrained
into rotation,

A rotational effect analogous to the Zwetkoff effect, but far more strongly manifested, was recently
observed by Moskowitz and Rosenzweig [2] in experiments with a ferromagnetic fluid. The latter was a
colloidal suspension of ferromagnetic particles suspended in a nonconducting liquid.

In both of these studies an identical explanation is given for the observed entrainment of the fluid; it
appears to us that this explanation is in error. In the case of steady rotation of the suspended particles
the moment of the external force acting on them from the field is balanced by the moment of the viscous
friction forces. The authors of [1, 2] assume that this is sufficient to entrain the fluid into the macroscopic
motion. However, let us consider a suspension in which all the suspended particles rotate with the same
angular velocity w, Each particle draws into rotation the viscous fluid layers lying nearby, forming a
microscopic eddy whose dimensions do not exceed the distance between the particles; in so doing each
particle rotates the fluid about its own axis, therefore when averaged the microscopic eddies do not lead
to any resultant hydrodynamic motion, A "macroscopic" eddy with velocity @ = 1/2 rotv is possible, as
shown below, only in the case of nonuniform internal rotation.

1, For the theoretical description of the experimentally discovered [2] entrainment of fluid by a
rotating magnetic field it is necessary to account correctly for the interaction between latent rotation (of
the microeddy) and visible rotation (with the hydrodynamic velocity v). The equations of motion of an
incompressible fluid having internal angular momentum have the form [3]
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Here 8, Tg, and D are the volumetric density, relaxation time, and diffusivity of the internal angular
momentum, J is the moment of inertia per unit volume, equal in order of magnitude to pl 2, where p is the
density of the suspension, [ is the average distance between the suspended particles — the centers of the
microeddies, K is the volumetric density of the moment of the external forces acting on the particles.,

It should be noted that s is not simply the sum of the angular momenta s; of the solid particles. Each
particle draws into rotation the surrounding fluid, so that s is larger than s,, approaching the latter near
the boundary of the cavity, where the fluid motion is restricted,

The system of equations (1.1) is not closed; it must be supplemented by the equations defining the
external force moment density. However, such equations cannot be obtained in general form. In fact, the
moment k of the external force acting on a single particle depends significantly on its internal state and
orientation. Therefore to obtain the macroscopic volumetric density K we must average the microscopic
moments k, which requires special analysis in each concrete case,

We consider a ferromagnetic suspension consisting of spherical single-domain particles (if the
particles are not single-domain, the results obtained below are valid in fields whose intensity is less than
the coercive force, and then the residual magnetization is to be taken as m), each of which has the magnetic
moment m, If the intensity H of the homogeneous rotating field is small in comparison with fM;j (8 is the
anisotropy constant, M; is the specific magnetization of the solid ferromagnetic), the torque acting on an
individual particle is k = m X H. In the considered case of a strongly anisotropic ferromagnetic, deter-
mination of the external torque volume density reduces to simple summation of the vectors k, which yields

K= CEm)xH=MxH (1.2)

where M is the specific magnetization of the fluid, Thus the system (1,1) must be supplemented by the
equation describing the dynamics of the magnetization of the ferromagnetic suspension,

The magnetic moment of an individual particle is acted upon by the field H, created by the external
sources, and the local field owing to dipole —dipole interaction of the magnetic moments. However, the
latter, as in a paramagnetic, has no orienting effect and therefore is not considered in the following. The
equilibrium distribution of the particles with regard to the orientations of their magnetic moments in a
constant field is defined by the Einstein-Fokker equation, whose steady-state solution in the present case
is known [4] to coincide with the Gibbs distribution

w =C exp (mH /] kT)

This implies that the system of magnetic moments behaves like a conventional paramagnetic, but
with anomalously large moments of the individual particles. The equilibrium magnetization of such a
"superparamagnetic" is described by the Langevin function

M =MoL

\

mH
Tf)
The magnetic moments of the particles are large; therefore saturation at room temperature is

reached even in very weak fields., Thus, in a constant field we have M = (M(/H) H. In a rotating field the
magnetic moment approaches the instantaneous equilibrium value, which makes it possible to write the
magnetization equation in the form (this equation is valid for field rotation frequencies which are small in
comparison with the ferromagnetic resonance frequency)

oM 1 M, 1.3

=T M-gH) -
where T is the magnetization relaxation time. Since in the highly anisotropic ferromagnetic in question
here the magnetic moment is rigidly coupled with the axis of easiest magnetization, rotation of the magnetic
moments is possible only as rotation of the particle themselves, Therefore the time 7 is determined only
by the temperature, fluid viscosity, and particle dimensions.

Equations (1.1)— (1.3) form a complete system for the problem in question,

2, Let a ferromagnetic fluid fill a cylindrical cavity of radius R. The magnetic field, perpendicular
to the axis of the cylinder, rotates with the constant angular velocity w

H, = H cosot, H, = H sin ot
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We seek the steady-state solution of the equations of motion, in which the fluid velocity has only the
¢ component: vy = v{r), vy = vy = 0. We see from (1,1.1) that such motion is possible if s is independent
of time and s = 8¢ = 0, 8; = s(r). It follows from (1.1.2) and (1.2), in turn, that the steady solution of this
form exists only if Kz = MXHY— MyHX = const (t). This condition is satisfied when the magnetization vector
rotates with the same angular velocity as the field, forming with the latter the constant trail angle o

M, =M cos (0t — a), My, = M sin (6t — a)
The magnetization amplitude M and the angle o are found from (1.3)
M
thCZ(DT’ M :MOCOS(X: Ti_—_l__.—o-r? (2.1)

Hence we see that the trail angle o < 1/2 7 for any field rotation frequencies, and the magnetic
moment volume density decreases monotonically with increase of the frequency (liquid polar dielectrics
in an electric field have similar frequency dispersion [5]). This means a spreading of the probability
distribution for the orientation of the magnetic moments of the individual particles as the field frequency
is increased, In this process the particles themselves, in spite of the assumptions made in [1, 2], do not
rotate in a stationary fashion. For stationary rotation of an individual particle it is necessary that the
trail angle formed by its magnetic moment with the field direction be constant, However the Brownian
motion, which varies continuously both the particle orientation and the local fields acting on the particles,
prevents this constancy,

Let us turn to the definition of v and s. Excluding the pressure from (1.1,1), we obtain for the non-
zero components of the vorticity @y = Qand internal moment sy = s the equations

[T‘ (9 — 4751],,, )] =0, —? (rs") — —Ti— (s —JQ)=—MHsina (2.2)

(prime denotes differentiation with respect to r), with the boundary conditions at the surface of the cylinder
v(R) =0,s8R) =s,
We integrate the first equation (2.2)

Q=4 (0 = 5 + G, @.3)

8
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and exclude Q from the second equation
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Hence
s(r) = A2 - Coly (wr)

Here I; is the Bessel function of imaginary argument, The fluid velocity is now found from (2.3).
After satisfying the boundary conditions we obtain

— i ! _ To(xn) I Iy (wr)

$(7) = so - (RMH sina— s0) ity [1 — el ], w() =0 [ — 71055 @.5)
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0= 4n (R) wRIo Ry ' 1 =T 4t [ wRIy(nR) .

We see from its definition that the values of the function n(R) lie in the range nx >n®R) > 1. The
nature of the solution (2.5) depends significantly on the value of R, i.e., on the ratio of the cylinder radius
to the diffusion length

Ip=1m=VDv, (q./n~1) (2.6)

The basis of the internal angular momentum diffusion mechanism lies in the viscosity of the suspen-
sion, while the relaxation time is determined by the viscosity and the average distance ! between the solid
particles (microeddy centers). Very simple estimates of the type D ~ v and 7g ~ 1%/v lead in accordance
with (2.6) to Ip ~I. Comparison of the calculation results with experiment [2] yields ID ~ 107% cm, which
agrees with the estimate noted above. Therefore in the following we shall take R > 1,
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Fig. 1

The solution (2,5) for ®E>> 1 has a very marked boundary layer nature, Throughout the entire fluid
volume, with the exception of a narrow wall layer, s is constant, equal to TgMH sin ¢, and diminishes to
the boundary value s; at distances of order Ip (Fig. 1a). The quantity s, characterizes the rotational
intensity of only the suspended particles; its definition goes beyond the scope of hydrodynamic theory. In
principle the quantity s, can be determined experimentally. Unfortunately, the experimental data presently
available are not adequate for this purpose — the single note [2] presents only a brief description of pre~
liminary observations. However, we can assume that s; is small in comparison with TgMH sin o, In fact,
8 = TgMH sin « is the sum of the angular momenta of the microscopic eddies whose dimensions are on the
order of the distance I between the particles. Since ! is large in comparison with the particle dimension

(so/ 8) ~ (@] * K1
Therefore we can drop s, in the expression for the velocity amplitude v.

Accounting for (2.1), then for »R > 1 we have

_ MHR 1 ot
Vo = 2y xR 14 o¥? 2.7)

The velocity profile v(r) is linear up to ¥ *R—Ip (Fig. 1b), We see from (2.7) that the amplitude of
the macroscopic fluid motion velocity is proportional to the magnitude of the applied field and has marked
frequency dispersion, The maximal rate of entrainment of the fluid by the rotating magnetic field is
reached for w7 =1,

The dependence of the velocity amplitude on the field intensity is presented in [2] for two values of
the field cyclic rotation frequency: fi= 100 Hz and f, = 1000 Hz, For both frequencies the amplitude is a
linear function of the field and the slope of the line v (H) at the frequency f; is less by a factor of four than
for fs. Thesedata are sufficient to use (2.7) to determine the magnetization relaxation time. The resulting
value 7 =2+107* sec is in agreement with an independent estimate, in accordance with which 7 = 4ana¥%kT
is the diffusion time for rotational Brownian motion: equating these expressions for 7 yields the correct
order of magnitude for @ ~107° cm [6],

3. In opague fluids, which include the ferromagnetic suspensions, measurement of the velocity
profile involves serious difficulties. Far better precision can be obtained by studying the integral
characteristics of the motion: the frictional torque acting on the cylinder walls and the power absorbed,
which can be measured by standard electronic methods. In this connection there is interest in calculating
the frictional torque My and the dissipative function F.

The friction torque acting per unit cylinder length is [7]
M= —2nR0,, (R), 07 (r) =1y (v" — o/r)

Substituting the fluid velocity from (2.5) into the expression for the (r¢) component of the viscous
stress tensor, we obtain

2 . ; - Ny . 214 (VH)
M;=nl?MH sina ) [1 i (kR)]

Hence for nR > 1

M; = nRzglfoHl—fg?T—z 8.1)

Let us estimate the magnitude of the frictional torque for w7 ~1, A ferromagnetic suspension with

M, = 60 Gauss was used in the experiment [2]. For such a fluid with cylinder radius R ~ 1 ¢cm we obtain
My ~H - 10* dynes.

699



The dissipative function for a fluid with internal rotation has the form {3}

v, dv, \2 . 2 2
FaFot ForFo, Fa=g(gr ), Fo=Lt5Td Fo=7(4) (3.2)

The energy dissipated per unit time is | E*| = 2 [FdV; here the integration is performed over the
cylinder volume V., The primary contribution to the dissipation is that of ¥, associated with relaxation
of the internal rotation. In fact, Fy and Fp are small because of the smallness of the derivatives v' and
s' through the volume of the cylinder except for the narrow wall layer of thickness Ip (Fig. 1). In this
layer Fnand Fp are comparable in magnitude with Fr, so that their contribution to the integral E* is small
in comparison with the contribution of F in the ratio

Ip/R =@xR)11

For the same reason, in the expression for Fr we can neglect JQ in comparison with s. Thus, the
dissipative function is practically constant over the entire cylinder volume and equal to

2

F~F, x—ZJ—TS-z—Z%S—(rsMH sin )2
Thus the absorbed power is
. 202
|E'| = 2= M ey (TH)?)“ (3.3)

Maximal absorption takes place for w7 ~ 1, In this case, using the simple estimates J ~pI? and Tg ~
1?/v presented above for M = 60 Gauss, we obtain

[ E"})V ~1072H* W/em®, (3.4)

where H is expressed in Oersteds. Such a large value of the dissipated power makes it practically
impossible to realize the ferrohydrodynamic pumps proposed in {2}, based on entraining fluid by a rotating
field,

4, In conclusion we shall discuss the limits of applicability of the above analysis. Equations (1.1)
are linear in s, This means that they do not describe the correlation of microeddies at different spatial
points, This approximation is acceptable as long as the radius of the microeddy which forms around the
solid particle is small in comparison with the distance !/ between particles, or at least does not exceed 1,
However, increase of s with increase of H (s &~ Tg MH sin «) means an increase of the radii of the "hound"
eddies. Therefore, beginning with some values of the magnetic field intensity interaction of the eddies
becomes significant and the linear equations will no longer be valid, In strong fields an entire spectrum
of "microeddy" scales develops, which corresponds to highly anisotropic developed turbulence, There is
no basis to expect that the linear dependence of the average velocity on the field intensity is maintained in
the turbulent region, Such a linear dependence was observed in the experiments of [2], which confirms the
applicability of our analysis for the field range used in [2].

LITERATURE CITED

1. V. Zwetkoff, "Bewegung anisotroper Flissigkeiten im rotierenden Magnetfeld," Acta physicochimica
URSS, vol, 10, no. 4 (1939).

2. R, Moskowitz and R. E, Rosensweig, "Nonmechanical torque — driven flow of a ferromagnetic fluid
by an electromagnetic field," Appl. Phys, Let,, Vol. 11, No. 10 (1967).

3. M. I, Shliomis, " On hydrodynamics of a liquid with internal rotation,"” ZhETF, Vol. 51, No, 1(7)
(19686).

4, M. A, Leontovich, Statistical Physics [in Russian], Gostekhizdat, Moscow (1954).

5, P, J, Debye, Polar Molecules [Russian translation], ONTI (1934),

6. J. L. Neuringer and R, E, Rosensweig, "The ferrohydrodynamics," Phys, Fluids, Vol. 7, No. 12
(1964).

7. L. D, Landau and E, M, Lifshitz, Mechanics of Continuous Media [in Russian], 2nd edition,
Gostekhizdat, Moscow (1953),

700



